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~EFO~ATION OF AN ELASTIC ~ISOTROP~C MICRO-INHO~OGENEOUS HALF-SPACE* 

V.V. PODALKOV and V.A. ROMANOV 

There is considered the problem of deformation of a transversally-isotropic micro- 
inhomogeneous half-space under macro-homogeneous stress-strain state conditions. It 
is assumed that the half-space boundary is parallel to the plane of isotropyofthe 
medium, filling it, and the elastic parameters governing the medium are independent 
of the coordinate normal to the boundary , and are random functions of two coordin- 
ates. The problem is solved by the method of perturbations. Dispersions of the 

deformation are constructed by this method in a first approximation. The behavior 
of the deformation dispersion is investigated as a function of thecoordinatenormal 
to the plane of isotropy. 

1. In a transversally-isotropic inhomogeneous half-space sa >O let a macro-homogene- 
ous state of stress and strain be realized 

013' = (Uij). E$) = <Eff) (1.1) 

Here and henceforth, the angular brackets will denote the operation of mathematical ex- 
pectation. 

Hooke's law for a transversally-isotropic medium has the form /I/ 

Here i#ji;i,j= 1,2,3 , and there is no summation over L, X, IL, x, y, p are elasticmoduli 
of the transversally-isotropic medium, 0 = s&r and 6tl is the Kronecker delta, 

Let us represent the elastic characteristics of the material qfx,) as well as the dis- 

placement of the deformations and stresses A (x) in the form /2/ 

4 (x1) =q'O' -i-P(') (x,), !7(0)= (q(x*)> 

x* = (21; z,), Q = h, p, x, y, p 

A (x) = Ato) + A(‘) (x), A”’ = (A (x)> 

x = (21; 32; Zg)v A = uI2 E&l* Qij 

(1.31 

(1.4) 

The superscript 1 in (1.3) and (1.41 is attributed to fluctuations in the appropriate 
quantities. 

Substituting (1.2) into the equilibrium equations and using the representation of the 
quantities in (1.2) in the form (1.3) and (l-4), we obtain a system of equations for the first 
approximation 

8:; -k Q$&k t fQI&L + 03%,@ = -ft 
ey + w&* + 4&a = 43 

Ii1 = f.aWB,, a, 5;: pWB,, a3 = (x@~ + p’3’)/B, 

a, = ($3) i p’3’)/&, as = (x(3) -+ y(O) f Lp(O))/B, 

& = A(O) f p(O), Bz = h(O) + $0) + x(O) + p(O) 

(1.5) 

(1.61 

Let us limit ourselves to the consideration of the case when the random fields !$I) (x*1 
are statistically homogeneous and isotropic and are statistically homogeneously and isotropic- 
ally interrelated. In this case q(*)(x*f are representable 131 by Fourier-Stieltjes integrals 
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cl(l) (x*)= 8 exp(iox*)dr&(o); "=PJJI;oz} 
-.x 

(I .- 

We seek the solution of the system (1.5) in the form 

U, 
(l)=v)!l)+wjl) (j=l, 2, 3) ii.8) 

O) b, is a particular solution of (1.5), and w(j"is the general solution of a homogeneous system 
of equations corresponding to (1.5)). Let us put 

$'=fl a~'(0)exp(iox,)d~,(o) (j=1,2,:3) (1.9) 
-0D 

(Here and henceforth, the summation is over the repeated subscript q, where Q takes on the 
letter values mentioned earlier), Substituting (1.7) and (1.9) into (1.5), we obtain 

ap =- 
b!,“) (1 + a,) cd- o,b/% 

I 

=I (I+ 01) I.4 (1.10) 

(3) 
b(Q) 

aq = -3 (i,l=3:1,2), 6’*=6.+& (k-1,2) 
a,& 

where the biq’ are coefficients for the corresponding drp, (0) in (1.6). 
The general solution of the homogeneous system of equations corresponding to (1.5) has 

the form 

$)=SJ @'(rs)exp(iox,) +,(a) (j= 1,2,3) 
-m 

1.11) 

py = (_ I)‘-’ $- A:"')exp(kt~zs)+ $ Ajrq’exp(kps) 

P$P)=A\%)exp@az3) (r=l,2; l=2,3) 

Here ki (i = 1, 2, 3) are roots of the characteristic equation 

h&E + h,o?V + h$0"k* + h,o~ = 0 

h, = h, (a,, a2, a2. a4, a,), n = 1, 2, 3, 4 

that satisfy the condition Re k, < 0 (s = 1, 2, . . ., 6) (we later denote the roots satisfying 
this condition by k, = -mlo, mf >O), and Ai”) are arbitrary constants (there is no summa- 
tion over r). 

The boundary conditions for the stress fluctuations on the plane xi = 0 in the case of 

an arbitrary macro-homogeneousstateof stress and strain have the form 

&' = c$) = 0;) = 0 (l.i2) 

The solution of the system (1.5) can be obtained by substituting (1.9) and (1.11) into 
(1.8) and by determining the constants Aiq’ from the conditions (1.12). The general expres- 

sions for the dispalcement fluctuations in the case of an arbitrarymacro-homogeneousstate Cf 
stress and strain are not presented here because of their awkwardness. 

2. w e perform all the subsequent calculations for two relatively simple, but neverthe- 
less representative, particular cases: a) tension of a half-space in the direction of the 

axes r, and x, by constant stresses <an) = (c&) = c@', and b) deformation of a half-space by 

constant tangential stresses (q:o = <G22) = do). 

The solutions of (1.5) will have the form 
For the case a) 

m 

(J!’ = , a(J) lo) + (- I)+1 01 
P 

o, A:j*'cxp(- mloxz) + 
1 -m 

2 A$,“) exp(- m16E3) exp(ioX,) dcp,(o) 
1 

_ 
&‘LSS A~")e~p(--m~w?a) exp(iox,)dm,,(o) 

-.N 

(2.1) 

For the case b) 



n 

(1) _ 
UJ - SU (- I)," + AVQ’ exp (- m,6lq) -+ 

, 
-n 

Oj&Q) x e p(- m,ozs) exp(iwr,)d~(o) 

z$’ I$ [c$‘(o) + A’“*’ 
1 

1 expt-we)] exp(iox,)dq,(o) 

(j=1,2; l=2,3) 
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(2.2) 

(there is no summation over the j ). The coefficients (mn) A, 

tions (1.12) and are not presented here. 
Using the Cauchy formula EC’ = (ul!i + uif’i)/2, the Hooke's 

are determined from the condi- 

law (1.2), and expressions for 
the displacements (2.1) and (2.2), the strains and stresses can be found in a first approxima- 
tion. Here we limit ourselves to the strains. For case a) we have 

oc 
&A z-f- 

SN 2 c$’ ((0) + (- 1)%-l $ #"exp(- rnre~~)+ (2.3) 
-cc 

2 A\kQ' 
0 exp(- rn,wrg) o, _t al;n)(w)+(- l)m-rc AimQ) x 1 c 

exp (- ~z.~oIz~) + > AimQ’exp (- rnlaz~) 1 1 ok exp tioxd dvQ b) 

(k, m = 1, 2; I = 2, 3) 

(summation is not performed over the k and m). The expressions for the remaining strain 
fluctuations in case a), as well as for the strain fluctuations in case b) have an analog- 
ous structure, and are not presented here. 

Let the correlation functions of the fields of elastic characteristics 

G(5r)=Ku,(E*)= W(x,)~"(x, + g,)> 

E1=EmL(m=1,2), y, z=h, p, x, y, p 

(here and henceforth the bar denotes the complex-conjugate quantity) satisfy the condition 

~IK,z(E.)l&<~ 
0 

In this case the following relationship holds for dqq 

(dv, (a) dq, (co’)) = S,, (0) fi (a -01’) 6 (0~ - a’) do da’ (2.4) 

(s (CO) is the spectral density, and 6 (t) is the delta function). 
Using (2.3) for the strain fluctuations and (2.4), the correlation strain tensors can be 

constructed 

(2.6) 

K mnst (Es, 23, ES) = C&i (x,, h) eY (x* + L ZS + b)> (2.5) 

for cases a) and b). Thus, for example, we have for the case a) 

K 
lrn 

rnnst =T 
W[ 

a?+(- l)m-leAlmv) exp(--rw)+ 
-m 

SF 
exp (- m,oxs) I[ 

a?) + (- 1)8-l 
2 AP2’ x 

exp (- mlw @1+ ES)) + + ti’ exp (- mk” 6% + b))] W,& f 

[ 
p + (- lp-* +  Almy’ exp (- mroz,) + 

m 

%Almy'exp(- m,wr,)] [a$"+(- I)‘-’ 
-FAI”jX 

exp (- mlo (G -I- h)) I & A!? exp (- mkw (58 + ES))] o,,o. + 

1 
F + (- l)n-1 cnu) -$A:“Y’exp(-mIctus)+~Ai x 

exp (- mw$ 
I[ 

a;’ + (- 1)8-l -$ Ay)exp (- mm (33 + ES)) + 
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-$ A?‘exp (- mkw (5) f %8)) 
_ 1 

~,,,q + 

[ 
i$j +(- I)“-1 +A'") exp(- mlos,) +o" F x 

0 

exp(- m,6rrs) 
IC 

u!" + (- l)‘-* + A:"'exp(- mlo(z3 + Es))+ 

3 A(") 
0 L exp(--+(z8 + %3))]a8O,j S,,(o) exp(io%,)do 

(m, n, s, t = 1, 2; 1, k = 2, 3; y, z = 5, p, X, y, p) 

(summation is performed over the subscripts y and z, where y and z take on the letter values 
mentioned; there is no summation over the m, n, s, t 1. The expressions for the remaining cor- 
relation strain tensor components are not presented here for the case a), nor for the case 
b). 

3. We examine the variance of the strain in greater detail, where their expressions 
can be obtained for both case a) and case b) from the relationship (2.6) by setting %I = %, = 
%a = 0. Because of the awkwardness of the general expressions for the variance, we shall 
not present them here. Simpler formulas, and more easily subjected to analysis, are obtained 
for the mentioned random strain field characteristics in the case of considering some specific 
material. It is known /4/ that above 47 rocks can be considered as transversally isotropic 
media. Let us examine one, namely, marble, 

It is convenient for the subsequent investigation to go from the elastic moduli h, P?XT 
y,p to the engineering moduli /l/ E,E',G,G',v,v' between which the connection is given by 
the relationships 

y = [s!P (1 - v*) + EE'v + E'V-2EE'v' (1 + v)] F-l- 

4G' + 2G, p = G' - G, F = (1 + v)(E'v + Ev'*) 

Following /4/, we introduce the anisotropy parameter p by the relationship p =, EIE’. 

Moreover, we use the approximate formula /4/ which relates the shear modulus G' for planes 
normal to the plane of isorropy to the principal Young's moduli E, E' and the Poisson ratios 
v, v' 

G’= 
EE' 

E + E' (1 f 2~') 

as well as by the known relationship that holds in the plane of isotropy 

G= E 
2 (1 + v) 

(3.2) 

(3.3) 

Furthermore, assuming that the quantitites v,v', p are known (for marble v = 0.22, v' = 

0,06;p = 1,37), while the representation (1.3) of E (x*) = E(O) + E(l) (x,) or E (x,)/E@) = 1 A 
E(')(x,)lE@) holds for the principal modulus E,we obtain expressions for the variance of the 
strain from (2.6): 

Case a) 
m 

D ,212 = co ss [cy'+ &'exp(- 2m20u3)+ 
--fi 

ct'exp(- (mn+m3)@zS)+ cy'exp(-Zm~fJ+ 

c:"exp(- mloz3)+ $exp(- mawza)] S(w)vdO 
N 

D lS,.¶ = co 
ss 

$'[exp(- m+zs)- exp(- rn3md]* S(ti)gd@ 

D,&f5 [et'+ ct'exp(- mloza) + &'exp(- ma~s)]~S(Nd@ 
-_ 

(3.4) 

Case b) 
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(3.5) 
02 

D ,212 = co 
ss 

{cE’ (ol - 02)~ (01 + 02)~ exp (- 2m1f~N -t 
-0D 

o~~~*(o~ + co# [$'exp(-22mZozs)+c~'exp(- 2sWG)+ 

cY exp (- (m2 + m3) w~)l - wol bh2 - 4’) X 

[@exp(-(mr+m2)wz,)+c~'exp(- (ml+ m8)cnza)ll+$d@J 
m 

&IS = co ss 
c$‘) {- w1 (co1 -t 02) + 0~ (w - 01) exp (- mW3 -I- 

-0ci 

(,$ (0) is the spectral density of the variance of the modulus ~/~(~~,c,=(u~~~/~~~~)*,c~' arecertain 
. numbers). 

We assume that the correlation function of the modulus E/E@) has the form 

Ks = dae-BIEI (3.6) 

Here p> 0 is a quantity reciprocal to the radius of cowrelation of the modulus EIE@j, 
and 8 is the variance of the modulus (dL < 1). 

A spectral density of the form 

(3.7) 

corresponds /3/ to the correlation function (3.6). 
Substituting (3.7) into (3.4), and (3.5), passing to polar coordinates in these formulas, 

and integrating, we obtain 
Case a) 

D:,,, = by' - z [b;"A (2m.9) - #'A ((mz + ms)s) + 

b?'A (2m9) + b:‘A (mzz) - b!“A (m&l 

Case b) 

D:2,2 = bp’ - x [bj”A (2m,x) + b?'A (2~s) + b?'A (2m.9) -b;“A ((mp + ms) z)l 

(& = DI&(c&), A (z) = H,, (z) - No (z), 5 = f&J) 

Here H,(z), N,(Z) are Struve and Neumann functions, respectively, and bf’ are numbers. 
Expressions for the remaining variances are analogous in structure and are not presented here. 

The solid lines in the Fig.1 are graphs of the variance of the strain (I-D:zm.lO,z - D,*, 

JJQ 
5 io 

Fig.1 

3 -G,,. iOs) for the case a) and (I'-D:zm, ~--De*.10-~,3-~&,) for" 
case b). It is seen that the domain in which changes in the vari- 
ance are essential does not exceed 3-7 radii of correlation of 
the elastic modulus, while the greatest values of the variance 
are either on the boundary z=O or in the zone of the size 1-2 
of the radius of correlation of the modulus. The corresponding 
variance curves for the strain of a micro-inhomogeneous half-space 
with "averaged" (isotropic half-space) /5/ elastic moduli are 
presented by dashed lines for comparison. The solution of the 
problem for an isotropic half-space is presented in /6/. 

It should be noted that for shear (case b) the bulk expans- 
ion 0 is zero /l/ in a transversally-isotropic homogeneous med- 
ium. It is different from zero for a micro-inhomogeneous trans- 
versally-isotropic medium, has a maximal variance on the boundary 
of the half-space z=o which damps out rapidly as + grows (Fig. 
lb). The bulk expansion 0 and shear eZ2 are zero in a micro-in- 
homogeneous isotropic medium as in a homogeneous medium. 

By calculating the coefficients of variability u (the ratio 
between the root-mean-square deviations of the strain fluctuations 
at the boundary to the root-mean-square deviations at infinity) 
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/7/, we obtain: anisotropic medium a) u1212 = 1.015; c8= 1.049; b) ~~3~3 = 1.414: isotropic ned1.~ 
a) L'~~~~= 1.192; ue = 1.404; b) ~lsls = 1.414. Comparing these results, it can be noted that the co- 
efficients of variability for a transversally-isotropic medium do not exceed the correspond- 
ing coefficients for an isotropic medium. This comparison permits the assumption that a 
transversally-isotropic medium is less "contrasty" than an isotropic medium. This phenomenon, 
as well as the presence of the volume expansion in the case of shear, should be taken intc 
account in solving practical problems. 
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